6 resultados para subjective global assessment

em Digital Commons - Michigan Tech


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies are suggesting that hurricane hazard patterns (e.g. intensity and frequency) may change as a consequence of the changing global climate. As hurricane patterns change, it can be expected that hurricane damage risks and costs may change as a result. This indicates the necessity to develop hurricane risk assessment models that are capable of accounting for changing hurricane hazard patterns, and develop hurricane mitigation and climatic adaptation strategies. This thesis proposes a comprehensive hurricane risk assessment and mitigation strategies that account for a changing global climate and that has the ability of being adapted to various types of infrastructure including residential buildings and power distribution poles. The framework includes hurricane wind field models, hurricane surge height models and hurricane vulnerability models to estimate damage risks due to hurricane wind speed, hurricane frequency, and hurricane-induced storm surge and accounts for the timedependant properties of these parameters as a result of climate change. The research then implements median insured house values, discount rates, housing inventory, etc. to estimate hurricane damage costs to residential construction. The framework was also adapted to timber distribution poles to assess the impacts climate change may have on timber distribution pole failure. This research finds that climate change may have a significant impact on the hurricane damage risks and damage costs of residential construction and timber distribution poles. In an effort to reduce damage costs, this research develops mitigation/adaptation strategies for residential construction and timber distribution poles. The costeffectiveness of these adaptation/mitigation strategies are evaluated through the use of a Life-Cycle Cost (LCC) analysis. In addition, a scenario-based analysis of mitigation strategies for timber distribution poles is included. For both residential construction and timber distribution poles, adaptation/mitigation measures were found to reduce damage costs. Finally, the research develops the Coastal Community Social Vulnerability Index (CCSVI) to include the social vulnerability of a region to hurricane hazards within this hurricane risk assessment. This index quantifies the social vulnerability of a region, by combining various social characteristics of a region with time-dependant parameters of hurricanes (i.e. hurricane wind and hurricane-induced storm surge). Climate change was found to have an impact on the CCSVI (i.e. climate change may have an impact on the social vulnerability of hurricane-prone regions).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drawing on theories of technical communication, rhetoric, literacy, language and culture, and medical anthropology, this dissertation explores how local culture and traditions can be incorporated into health-risk-communication-program design and implementation, including the design and dissemination of health-risk messages. In a modern world with increasing global economic partnerships, mounting health and environmental risks, and cross-cultural collaborations, those who interact with people of different cultures have “a moral obligation to take those cultures seriously, including their social organization and values” (Hahn and Inhorn 10). Paradoxically, at the same time as we must carefully adapt health, safety, and environmental-risk messages to diverse cultures and populations, we must also recognize the increasing extent to which we are all becoming part of one, vast, interrelated global village. This, too, has a significant impact on the ways in which healthcare plans should be designed, communicated, and implemented. Because communicating across diverse cultures requires a system for “bridging the gap between individual differences and negotiating individual realities” (Kim and Gudykunst 50), both administrators and beneficiaries of malaria-treatment-and-control programs (MTCPs) in Liberia were targeted to participate in this study. A total of 105 people participated in this study: 21 MTCP administrators (including designers and implementers) completed survey questionnaires on program design, implementation, and outcomes; and 84 MTCP beneficiaries (e.g., traditional leaders and young adults) were interviewed about their knowledge of malaria and methods for communicating health risks in their tribe or culture. All participants showed a tremendous sense of courage, commitment, resilience, and pragmatism, especially in light of the fact that many of them live and work under dire socioeconomic conditions (e.g., no electricity and poor communication networks). Although many MTCP beneficiaries interviewed for this study had bed nets in their homes, a majority (46.34 percent) used a combination of traditional herbal medicine and Western medicine to treat malaria. MTCP administrators who participated in this study rated the impacts of their programs on reducing malaria in Liberia as moderately successful (61.90 percent) or greatly successful (38.10 percent), and they offered a variety of insights on what they might do differently in the future to incorporate local culture and traditions into program design and implementation. Participating MTCP administrators and beneficiaries differed in their understanding of what “cultural incorporation” meant, but they agreed that using local indigenous languages to communicate health-risk messages was essential for effective health-risk communication. They also suggested that understanding the literacy practices and linguistic cultures of the local people is essential to communicating health risks across diverse cultures and populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highway infrastructure plays a significant role in society. The building and upkeep of America’s highways provide society the necessary means of transportation for goods and services needed to develop as a nation. However, as a result of economic and social development, vast amounts of greenhouse gas emissions (GHG) are emitted into the atmosphere contributing to global climate change. In recognizing this, future policies may mandate the monitoring of GHG emissions from public agencies and private industries in order to reduce the effects of global climate change. To effectively reduce these emissions, there must be methods that agencies can use to quantify the GHG emissions associated with constructing and maintaining the nation’s highway infrastructure. Current methods for assessing the impacts of highway infrastructure include methodologies that look at the economic impacts (costs) of constructing and maintaining highway infrastructure over its life cycle. This is known as Life Cycle Cost Analysis (LCCA). With the recognition of global climate change, transportation agencies and contractors are also investigating the environmental impacts that are associated with highway infrastructure construction and rehabilitation. A common tool in doing so is the use of Life Cycle Assessment (LCA). Traditionally, LCA is used to assess the environmental impacts of products or processes. LCA is an emerging concept in highway infrastructure assessment and is now being implemented and applied to transportation systems. This research focuses on life cycle GHG emissions associated with the construction and rehabilitation of highway infrastructure using a LCA approach. Life cycle phases of the highway section include; the material acquisition and extraction, construction and rehabilitation, and service phases. Departing from traditional approaches that tend to use LCA as a way to compare alternative pavement materials or designs based on estimated inventories, this research proposes a shift to a context sensitive process-based approach that uses actual observed construction and performance data to calculate greenhouse gas emissions associated with highway construction and rehabilitation. The goal is to support strategies that reduce long-term environmental impacts. Ultimately, this thesis outlines techniques that can be used to assess GHG emissions associated with construction and rehabilitation operations to support the overall pavement LCA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global climate change is predicted to have impacts on the frequency and severity of flood events. In this study, output from Global Circulation Models (GCMs) for a range of possible future climate scenarios was used to force hydrologic models for four case study watersheds built using the Soil and Water Assessment Tool (SWAT). GCM output was applied with either the "delta change" method or a bias correction. Potential changes in flood risk are assessed based on modeling results and possible relationships to watershed characteristics. Differences in model outputs when using the two different methods of adjusting GCM output are also compared. Preliminary results indicate that watersheds exhibiting higher proportions of runoff in streamflow are more vulnerable to changes in flood risk. The delta change method appears to be more useful when simulating extreme events as it better preserves daily climate variability as opposed to using bias corrected GCM output.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current procedures for flood risk estimation assume flood distributions are stationary over time, meaning annual maximum flood (AMF) series are not affected by climatic variation, land use/land cover (LULC) change, or management practices. Thus, changes in LULC and climate are generally not accounted for in policy and design related to flood risk/control, and historical flood events are deemed representative of future flood risk. These assumptions need to be re-evaluated, however, as climate change and anthropogenic activities have been observed to have large impacts on flood risk in many areas. In particular, understanding the effects of LULC change is essential to the study and understanding of global environmental change and the consequent hydrologic responses. The research presented herein provides possible causation for observed nonstationarity in AMF series with respect to changes in LULC, as well as a means to assess the degree to which future LULC change will impact flood risk. Four watersheds in the Midwest, Northeastern, and Central United States were studied to determine flood risk associated with historical and future projected LULC change. Historical single framed aerial images dating back to the mid-1950s were used along with Geographic Information Systems (GIS) and remote sensing models (SPRING and ERDAS) to create historical land use maps. The Forecasting Scenarios of Future Land Use Change (FORE-SCE) model was applied to generate future LULC maps annually from 2006 to 2100 for the conterminous U.S. based on the four IPCC-SRES future emission scenario conditions. These land use maps were input into previously calibrated Soil and Water Assessment Tool (SWAT) models for two case study watersheds. In order to isolate effects of LULC change, the only variable parameter was the Runoff Curve Number associated with the land use layer. All simulations were run with daily climate data from 1978-1999, consistent with the 'base' model which employed the 1992 NLCD to represent 'current' conditions. Output daily maximum flows were converted to instantaneous AMF series and were subsequently modeled using a Log-Pearson Type 3 (LP3) distribution to evaluate flood risk. Analysis of the progression of LULC change over the historic period and associated SWAT outputs revealed that AMF magnitudes tend to increase over time in response to increasing degrees of urbanization. This is consistent with positive trends in the AMF series identified in previous studies, although there are difficulties identifying correlations between LULC change and identified change points due to large time gaps in the generated historical LULC maps, mainly caused by unavailability of sufficient quality historic aerial imagery. Similarly, increases in the mean and median AMF magnitude were observed in response to future LULC change projections, with the tails of the distributions remaining reasonably constant. FORE-SCE scenario A2 was found to have the most dramatic impact on AMF series, consistent with more extreme projections of population growth, demands for growing energy sources, agricultural land, and urban expansion, while AMF outputs based on scenario B2 showed little changes for the future as the focus is on environmental conservation and regional solutions to environmental issues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The importance of the United States' wood and wood byproducts as biomass feedstocks is increasing as the concern about security and sustainability of global energy production continues to rise. Thus, second generation woody feedstock sources in Michigan, e.g., hybrid poplar and hybrid willow (Populus spp.), are viewed as a potential source of biomass for the proposed biofuel ethanol production plant in Kinross, MI. It is important to gain an understanding of the spatial distribution of current feedstock sources, harvesting accessibility via the transportation infrastructure and land ownerships in order to ensure long-term feedstock extent. This research provides insights into the current extent of aspen and northern hardwoods, and an assessment of potential for expanding the area of these feedstock sources based on pre-European settlement conditions. A geographic information system (GIS) was developed to compile available geospatial data for 33 counties located within 150 miles of the Kinross facility. These include present day and pre-European settlement land use/cover, soils, road infrastructure, and land ownerships. The results suggest that a significant amount of northern hardwoods has been converted to other land use/cover types since European settlement, and the "scattering" of aspen stands has increased. Furthermore, a significant amount of woody biomass is available in close proximity to the existing road network, which can be effectively utilized as feedstock. Potential aspen and northern hardwoods restoration areas are identified in the vicinity of road networks which can be used for future woody feedstock production.